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Graph neural networks
• Leverage graph structure
• Direct learn representation for target task

• Applications: social network modeling, decision making
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Unfair!



Fairness
• Group fairness
• Individual fairness
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Group fairness

Different groups 
defined by protected 
attributes receive fair 

share of interests

Individual fairness

Similar individuals 
receive similar 
treatments or 

outcomes



Group Fairness: Statistical Parity
• People from different groups defined by protected 

attributes have equal probability of receiving certain outcomes

• Example:
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Classifier for loan 
application

Approved Rejected



Individual Fairness
• Giving similar individuals similar outcomes
• Formulation [1, 2, 5]
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Lipschitz Condition
𝑑! 𝑀 𝑥 ,𝑀 𝑦 ≤ 𝐿𝑑" 𝑥, 𝑦 , ∀𝑥, 𝑦 ∈ 𝓥

𝐿 > 0
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Deeper understanding of existing work
• Existing works [2, 5] utilize the 

equation on the right to measure 
individual (un)fairness
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Z

Z
Z Z

Model Outputs: Z

Deeper understanding of existing work

𝜖!,# =
𝑑$(𝑀(𝑣!),𝑀(𝑣#))

𝑑2(𝑣!, 𝑣#)
= ||𝐙 𝑖, : − 𝐙 𝑗, : ||%%𝐒[𝑖, 𝑗]

Equivalent to minimizing average 
constraining scalar for the entire dataset



Constraining scalars for a specific individual
A specific individual 𝒗𝒊 has constraining scalars against all 
individuals in the dataset
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Constraining scalars for different groups
Members of a group also have constraining scalars and the average 
indicates the level of individual fairness for this group
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PFR [2]
Preprocessing algorithm to produce individually fair embeddings

InFoRM [5]
Preprocessing/in-processing/post-processing algorithm to yield individually fair node embeddings

Existing works [2,5] actually lead to group inequalities of 
individual fairness

• Disparate optimization for different demographic groups
• Privileged group experiences better fairness optimization
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Why does the group equality of individual fairness matter?
Assume 𝜖$ < 𝜖 < 𝜖%
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Metric for individual (un)fairness for a group
• Overall individual (un)fairness [2, 5]

• Individual (un)fairness for a group 𝒱𝒑
• Include both intra-group and inter-group evaluations for completeness
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Metric for group disparity of individual fairness
• Propose a new metric:

Group disparity of individual fairness (GDIF)
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Metric for group disparity of individual fairness
• Propose a new metric:

Group disparity of individual fairness (GDIF)
• How to measure disparity for two groups 𝒱' and 𝒱(?

• For dataset with multiple groups, GDIF for all groups in dataset:
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GUIDE Framework

GUIDE includes two main steps:
(1) node embedding initialization and (2) fairness promotion
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GUIDE Framework

Embedding initialization with node feature matrix X and node adjacency matrix A
Step 1: Obtain informative embeddings
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GUIDE Framework

Fairness promotion with node similarity matrix S and node embeddings H
Step 2: Fairness promotion
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GUIDE Framework

(1) Utility maximization for node classification task 
Optimization Objectives
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GUIDE Framework

Optimization Objectives
(2) Overall individual (un)fairness minimization and (3) GDIF minimization



(1) Utility maximization, (2) overall individual fairness, (3) group equality of individual fairness
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GUIDE Framework

Overall Optimization Objectives

ℒ&'&() = ℒ*&+) + 𝛼ℒ+,(+- + 𝛽ℒ+,.
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• Downstream Task: Node classification
• Baselines: FairGNN [3], NIFTY [4], PFR [5], InFoRM [2]

• GNN backbones: GCN [7], GIN [8], JumpingKnowledge [9]

• Metrics: AUCROC, Individual (un)fairness, proposed GDIF
• Datasets: Credit [10], Income [11], Pokec-n [12]
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Results
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Results

Observations
• GUIDE achieves the best fairness performances across multiple datasets and 

GNN backbones as shown with the IF and GDIF metrics
• GUIDE obtains high fairness optimization for more expressive GNNs such as GIN
• GUIDE obtains comparable utility performance in the node classification task 

compared to baselines
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Ablation of attention

Observations
• Backbone GNN without attention mechanism to minimize the same loss function
• Results show attention help further reduce individual (un)fairness while 

having similar AUCROC and GDIF performances
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1. Current individual fairness methods omit group 
equality constraints and could cause unfair 
consequences in critical decision systems

2. GUIDE tackles this issue and alleviates group 
disparity of individual fairness in GNNs while 
maintaining utility and fairness performances

3. GUIDE is evaluated with extensive experiments to 
demonstrate its effectiveness in promoting group 
equality of individual fairness
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